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1.0 Introduction

This document describes the Case 2 chlorophyll a algorithm. The algorithm is based on a semi-
analytical, bio-optical model of remote-sensing reflectance, R, (1), where R (1) is defined as the water-
leaving radiance, L, (1), divided by the downwelling irradiance just above the sea surface, E (1,07). The
R.4(A) model has two free parameters, the absorption coefficient due to phytoplankton at 675 nm,
8,(675), and the absorption coefficient due to gelbstoff at 400 nm, a,(400). The R model has many
other parameters which are fixed, or can be specified based on the region and season of the MODIS
scene. R ismodeled using these parameters at each of the visible-range MODIS wavelengths, A..
R.J(A;) isderived at each pixel from the normalized water-leaving radiance, L ,(A;), measured by
MODIS. These R (4) values are put into the model, the model isinverted, and a,(675) and g,(400) are
computed. Chlorophyll a concentration is then derived smply from the a,(675) value. In highly turbid
waters, an empirical algorithm is used to estimate chlorophyll concentration. The algorithm also outputs
both the total absorption coefficients, a(4;), and the phytoplankton absorption coefficients, a,(,), at the
visible MODI S wavelengths.

2.0 Overview and Background Information

According to the optical classification by Moredl and Prieur (1977), oceanic waters may be
characterized as Case 1, in which the optical properties are dominated by chlorophyll and associated and
covarying detrital pigments, or as Case 2, in which other substances which do not covary with
chlorophyll also affect the optical properties. Such substances include gelbstoff, suspended sediments,
coccolithophores, detritus, and bacteria. Pigment retrievals from CZCS datain Case 1 waters have
achieved reasonable results (x 40% for best cases, Gordon et al., 1983). However, the non-chlorophyll-
covarying substances in Case 2 waters have caused the retrieval of pigment concentrations to have
inaccuracies as high as 133% (Carder et al., 1991).

Marine colored dissolved organic matter (CDOM), also called gelbstoff, absorbs light in an
exponentially decreasing manner as a function of wavelength. Pheopigments, detritus, and bacteria
similarly absorb more strongly at 412 nm than they do at 443 nm. Phytoplankton, on the other hand,
absorb more strongly at 443 nm than at 412 nm. Absorption largely determines the amount of light that
exits the sea surface at each wavelength. Thus, by measuring the relative amounts of light leaving the
sea surface at those two wavelengths, we can estimate the relative amounts of phytoplankton and the
detrital products mentioned above.

The R, model has a few parameters that cannot be fixed and applied to the entire globe, i.e., they
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are site- and season-specific. Thisisdue to the inherent variability of many bio-optical constituents. For
example, absorption per unit chlorophyll by phytoplankton can change with species, and with nutrient
and lighting conditions by as much as a factor of five (Morel and Bricaud, 1981; Carder et a., 1991;
Morel et al., 1993). These same conditions can also effect the spectral shape of the absorption. Also,
particle size and concentration both have a significant effect on the spectral backscattering coefficient,
b,(1), of ocean water. Thisis so because pure water backscatters as ~ A™, large particles backscatter as ~
A7°, and smaller diameter detritus and bacteria backscatter with a spectral dependence somewherein
between the two (Morel and Ahn, 1990; 1991). Many of these factors covary, which allowed the simple
wavel ength-ratio algorithms of the CZCS (Gordon and Morel, 1983) to work fairly well. We havetried
to understand many of these individual covariances and have devel oped empirical expressions for several
individual bio-optical parameters. By analyzing individual components of the model, we can gain a
deeper understanding of the processes.

Extensive field data sets are needed to allow seamless modification of the model parameters with
time and space. The changes required will be due mostly to changes in the dominant plankton groups
present and the subsequent effects on bio-optical parameters such as pigment packaging. Acquiring such
data sets on a global scale should be amajor community goal during the next few years. We have
developed a scenario that can both guide the parameterization process and provide an initial
implementation of the algorithm for much of the ocean (tropics, subtropics, and summer temperate).
Parameterization for high-latitude and upwelling waters has also been developed, and a preliminary
method to smaoothly transition between regions will be implemented in Versions 2.0 and 2.1 of the

algorithm code.

2.1 Experimental Objective

The main data product is chlorophyll a concentration, [chl a], which can be used as an indicator
of plankton biomass, as an input to primary production models, or to trace oceanographic currents, jets,
and plumes. Other output products are a,(675), a,(400), a,(A), and a(4;). a,(4;) isused in the IPAR/ARP
MODIS algorithm. a,(400) by itself can be used to map river plumes, to determine diffuse attenuation at
that wavelength, or to calculate dissolved organic carbon (DOC) standing stocks and fluxes. In order to
calculate DOC, we need to know how DOC concentration is related to DOC absorption. As coastal,
estuarine, and other Case 2 environments become increasingly recognized as important areas of study,

algorithms that can deal with the complex bio-optical properties of these regions are required.



2.2 Historical Perspective

CZCSalgorithms for estimating [chl a] plus pheophytin a concentrations perform quite well for
regions of the ocean where scattering and absorbing components of seawater covary with these pigments,
i.e., in Case 1 waters (Gordon and Morel, 1983; Gordon et al., 1983). A number of empirical and semi-
analytical optical models have been developed to simulate the behavior of the underwater light field for
such waters (Morel and Prieur, 1977; Baker and Smith, 1981; Baker and Smith, 1982; Gordon et al.,
1988; Morel, 1988; Mitchell and Holm-Hansen, 1991). Such models have been used as the basis for
classifying water types and/or for devel oping remote sensing algorithms.

However, the accuracies of these models decrease when environmental conditions depart from
those representative of the data set used to empirically derive the covariance relationships. For instance,
CDOM is produced when grazing, photolysis, and other mechanisms degrade the viable plant matter at
and downstream from phytoplankton blooms. The CDOM-to-chlorophyll ratio will change dramatically
for aparcel of upwelled water over arelatively short time, from chlorophyll-rich and CDOM-poor to
CDOM-rich and chlorophyll-poor. Solid evidence for the occurrence of this scenario can be found in
two separate studies. Peacock et al. (1988) found that absorption attributed to CDOM at 440 nm was at
least 16 fold that due to phytoplankton pigments within an offshore jet from an upwelling region,
whereas pigments were the dominant absorption agents at the upwelling center near the coast. Similarly,
Carder et a. (1989) found that particulate absorption at 440 nm decreased 13 fold while CDOM
absorption at 440 nm increased by 60% in ten days for a phytoplankton bloom tracked from the
Mississippi River plume to Cape San Blas. Thiswidely varying CDOM-to-chlorophyll ratio has a
profound effect on upwelled radiance in the blue 443 nm band of the CZCS, and a smaller but still
significant effect in the green 520 nm band. The correspondence in absorption at 443 nm and 520 nm
between CDOM and chlorophyl| creates erroneously high estimates of pigment concentration in those
models which rely solely upon either of these spectral bands to indicate absorption due to phytoplankton.

Carder et al. (1991) proposed that a short wavel ength channel at around 410 nm could be used to
distinguish CDOM (and other degradation products) from chlorophyll. A channel at 412 nm will be
available not only on MODIS, but aso on the Ocean Color and Temperature Scanner (OCTS) and on the
Sea-Viewing-Wide-Field-Sensor (SeaWiFS). The Case 2 chlorophyll a algorithm will be thoroughly
tested during the SeaWiFS project.

2.3 Instrument Characteristics
The algorithm requires asinput L, a the MODIS wavebands 8-13, centered at 412, 443, 488,



531, 551, and 667 nm, respectively. R iseaslly derived fromL,, asR,=L,, F, where F,isthe
extraterrestrial solar irradiance. The 1000 m resolution and near daily coverage of MODIS will alow the
observation of meso-scal e oceanographic features in coastal and estuarine environments, areas seen to be

increasingly important in many marine science studies.

3.0 Algorithm Description

Morel and Gordon (1980) describe three approaches to interpret ocean color datain terms of the
in situ optical constituents: empirical, semi-empirical, and anaytical. In the analytical approach,
radiative transfer theory provides a relationship between upwelling irradiance or radiance and the in situ
congtituents. Then constituent concentrations are derived from irradiance or radiance values measured at
several wavelengths by inversion of the resultant system of equations. The Case 2 algorithm uses this
approach and the term "semi-analytical” is invoked because pieces of the radiative model are expressed

by empirical relationships.

3.1 Theoretical Description
3.1.1 Physics of Problem

After light enters the ocean, some of it is eventually scattered back up through the surface. This
light is called the water-leaving radiance, L, (A), and it can be detected from space. The magnitude,
spectral variation, and angular distribution of this radiance depend on: the absorption and backscattering
coefficients of the seawater, a(A) and b,(A), respectively (known as the inherent optical properties); the
downwelling irradiance incident on the sea surface, E(A,0%); and the angular distribution of the light
within the ocean. To make things easier, we divide seawater into three components, each one having
distinct optical properties of itsown. These components are the seawater itself (water and salts), the
particle fraction, and the dissolved fraction. Fortunately, a(A) is simply equal to the sum of the
absorption coefficients for each component, and, to first order, b, (1) isequa to the sum of the
backscattering coefficients. If we can accurately describe or model each spectrally distinct component of
the absorption and backscattering coefficients, then we can determine the magnitude of each one from
measurements of L, (1) and E,(0*,A), given some assumptions about the angular distribution of light in
thewater. The key hereisto accurately model the spectral behavior of a(A) for each component. The

spectral behavior of by(A) isnot as important.



3.1.2 Mathematical Description of Algorithm
3.1.2.1 R  Model

The R, model is given by the following general equation, which is adapted from Lee et a.
(1994):

_ ft? bb(A)
Q) mlaln) +by(A)] @)

R(2)

where f isan empirical factor averaging about 0.32-0.33 (Gordon et a., 1975; Morel and Prieur, 1977;
Jerome et al., 1988; Kirk, 1991), t is the transmittance of the air-sea interface, Q(A) isthe upwelling
irradiance-to-radiance ratio E (A)/L (A), and n istherea part of the index of refraction of seawater. By
making three approximations, Eq. 1 can be greatly smplified.

1) Ingenerd, f isafunction of the solar zenith angle, 6, (Kirk, 1984; Jerome et ., 1988; Morel
and Gentili, 1991). However, Morel and Gentili (1993) have shown that the ratio f/Q isrelatively
independent of 6, for sun and satellite viewing angles expected for the MODIS orbit. They estimate that
f/Q = 0.0936, 0.0944, 0.0929, and 0.0881, (standard deviation + 0.00%)=f440, 500, 565, and 665
nm, respectively. Also, Gordon et al. (1988) estimates that f/Q = 0.0949, at le@stf@0°. Thus, we
assume that f/Q is independenticdnd6, for all MODIS wavebands of interest, except perhaps for the
band centered at 667 nm.

2) /it is approximately equal to 0.54, and although it can change with sea-state (Austin, 1974),
it is relatively independent of wavelength.

3) Many studies have confirmed thatA) {s usually much smaller thang(and can thus be
safely removed from the denominator of Eq. 1 (Morel and Prieur, 1977; references cited in Gordon and
Morel, 1983), except for highly turbid waters.

These three approximations lead to a simplified version of Eq. 1,

b,(»)
a(2)

R .(A) = constant

)

where the "constant" is unchanging with respedt &md6,. The value of the constant is not relevant to
the algorithm since, as will be shown later, the algorithm uses spectral ratigskpBRd (the constant
term factors out.

In the following sections, both B and ak) will be divided into several separate terms. Each
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term will be described empirically. The equations are written in ageneral fashion — i.e., the empirically
derived parameters that describe each term are written as variables — and the actual values of the

parameters that are used in the algorithm are shown in Table 1.

3.1.2.2 Backscattering Term
The total backscattering coefficient, b,(A), can be expanded as

by(2) = b (2) +by,(2) )

where the subscripts "w" and "p" refer to water and particles, respectively. b, (1) isconstant and well
known (Smith and Baker, 1981). b, (1) ismodeled as

byo(2) = X {%l ’ 4

The magnitude of particle backscattering isindicated by X, which is approximately equal to b,,,(555),
while Y describes the spectral shape of the particle backscattering.
We now need to develop expressionsfor X and Y. To do this, we turn to the work of Lee et al.

(1994). They use adlightly different form of the R,, model, summarized by the following three

equations:
- 0.176 by(2)
(Y = —qayatn ®
by(%) _ byfA) by (d)
oSV oY VIR oYSY ©
b,,(2) 4001y’
Q:()\) - X/ [T} (7)

The main differences here are that b,/Q is modeled explicitly rather than just b, (compare Egs. 3 and 6),

and that 400 nm is used rather than 551 nm as the normalizing point in the particle backscattering term
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(compare Egs. 4 and 7). EQ. 6 is an approximation derived from single and quasi-singl e scattering theory
(Leeet al., 1994).

They developed a method to determine X’ and Y’ empirically for agiven optical station by model
inversion. The method uses measured values of R (1) and a(A) at ~ 200 wavelengths. The best-fit
valuesfor X' and Y’ are determined using Egs. 5-7 on a station-by-station basis. Using this method we
determined X’ and Y’ for anumber of optical stations taken from 4 separate cruises to the Gulf of
Mexico. We then converted the X* and Y’ valuesto our X and Y via

X =X'Q

Pl 551

[ 400]w
(8)

Y =Y/

using avalue of 3.55for Q, Next, the converted X and Y values were compared to the R ( 1) values
measured at the corresponding station with the purpose of finding empirical relationships for both X and
Y asafunction of R (1) at one or more of the MODIS wavelengths. Oncethisisdone, X and Y can be
estimated from MODIS data. These empirical relationships are described below.

3.1.2.2.1 Expression for X

Since X is approximately proportional to the magnitude of the particle backscattering, X should
covary with R, a one of the longer MODIS wavelengths, i.e., at 551 or 667 nm. Thisis so because at
these wavel engths water absorption dominates a( 1) and R , becomes approximately proportional to b,
(see Eq. 2), at least for non-turbid waters. We chose the 551 nm channel because the 667 nm channel
may be contaminated by chlorophyll fluorescence and because the water absorption at 667 nm is so high
that the water-leaving radiance signal there may be too small to be accurate.

The general expression for X is

X =X, + X F,,(551) 9)

where X, and X, are empirically derived constants. Linear regression performed on the derived values of
X vs. R(551) taken from four cruises to the Gulf of Mexico (CP92, Tambax 2, GOMEX, and COLOR)
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resulted in X, and X, values of -0.00182 and 2.058 (n = 53, r* = 0.96). Figure 1 shows the regression
graphicaly. If X is determined to be negative from Eq. 9 it is set to zero.

The values of X, and X, that are used in this version of the Case 2 chlorophyll algorithm are
probably adequate for most of the globe and they arelisted in Table 1. For regions influenced by rivers

outflows, these parameters should be determined on a site-specific basis.

3.1.2.2.2 Expression for Y

Y was found to covary in arather general way with the ratio R,(443)/R,(488). Variationsin
numerator and denominator values of thisratio are largely determined by absorption due to
phytoplankton and CDOM. Absorption due to water is about the same and low at both wavelengths.
Thus, to the extent that phytoplankton and CDOM absorption covary, the spectral ratio of the absorption
coefficients, a(443)/a(488), will be only weakly dependent on pigment concentration. Therefore, the
spectral ratio of backscattering coefficients should have a significant effect on the spectral ratio of R  at
these wavelengths. Y isthus represented as alinear function of R,(443)/R (488),

R, (443
Yoy, oy, Drs(449)

0 1 Rrs(488) (10)

where Y, and Y, are empirically derived constants.

0.015
Q/
,
o GOMEX o
» COLOR e
+ TAMBAX 2 L’
0.010F x CP92 . _
S b
~
N .
>
.
0.005 ! -
X
oooOL__» W o0y
0.000 0.002 0.004 0.006 0.008

R..(555), 1/ster

Figurel. X vs. R(551). Thelineisthelinear regression
equation X =-0.00182 + 2.058 R(551) (n = 53, r* = 0.96).
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Accurate measurements of a,(A) and accurate removal of reflected skylight from the R
measurements are critical in determining Y by model inversion. Only data from the GOMEX and
COLOR cruises are used here because the a,(4) values were determined with along-path
spectrophotometer (Peacock et al., 1994). Linear regression of Y on R,(443)/R,(488) for stations from
these two cruisesresulted in Y , and Y, values of -1.13 and 2.57 (n = 22, r* = 0.59). Figure 2 showsthe
regression graphically. If Y isdetermined to be negative from Eq. 10 it is set to zero. A number of other
spectral ratios of R,(A) were tested, but the 443:488 ratio had the highest correlation with Y. The
sensitivity of this method to errorsin a(A) and reflected skylight estimates likely accounts for some of
the scatter about the regression line.

The Y parameter should be large when the backscattering is due to small particles and/or water
and vice versa (Gordon and Morel, 1983). In oligotrophic regions we have determined values of Y

greater than 2, while in waters with [chl a] > 10 mg m™ the estimated Y values are often ~ 0.

s T T

b & o,
o GOMEX o /,’ ]
25T 4 CcoLoRr o e ]
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20F 7 B
o $
<
> 1.5F B
o, o
<& s
o
1.0 o <>/ & -
// <>
<&
i , o 1
0.5+ L7 N
z <&
L 4 <>

000 L/ v

0.4 0.6 0.8 1.0 1.2 1.4 1.6

R.(443) /R (490)

Figure 2. Y vs. R (443)/R (488). Thelineis the linear
regression Y = -1.13 + 2.57 R (443)/R (488) (n = 22, r’=
0.59).

3.1.2.3 Absorption Term

Thetotal absorption coefficient can be expanded as
a(») -a a) +a (a) +ay,d) +ay ) (1)

where the subscripts "w", "¢," "d," and "g" refer to water, phytoplankton, detritus, and CDOM ("g"
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stands for gelbstoff). a,(2) istaken from Pope et a. (1997). Expressionsfor a,(4), a,(A), and a(A) need
to be developed.

3.1.2.3.1 Expression for a,

The shape of the a,(4) spectrum for a given water-mass will change due to the pigment-package
effect (i.e., the flattening of absorption peaks with increasing intracellular pigment concentration due to
self-shading; Morel and Bricaud, 1981) and due to changes in pigment composition. We have found that
for agiven region and season, normalizing measured a,(A) curvesto g,(675) results in asmooth variation
for a,(1)/a,(675) vs. ,(675) for the MODIS wavebands centered at A = 412, 443, 488, 531, and 551 nm
(see Figure 3). This relationship describes the packaging and pigment effects better than the relationship
between ab*(k) and [chl a] that was used in previous versions of thisagorithm. Thisis so because the
qb*(k) vs. [chl a] relationship requires two separate measurements for each data point — a,(4) and [chl a]
— whereas the a,(1)/a,(675) vs. a,(675) relationship requires only the a, (1) measurement.

A hyperbolic tangent function was chosen to model this relationship in order to ensure that the
value of g,(4)/a,(675) approaches an asymptote at very high or very low values of a,(675) (Carder et al.,
1991). Using logarithmic scaling for both axes resultsin the following model equation for a (1) asa

function of a,(675),

a,(r) =ay(2) exp[al(A) t anh[az(A) / n( a¢(675)/a3()x)) H—aw(675) (12)

where the parameters a,(1)-a,(1) are empirically determined for each MODIS wavelength of interest.
3y(A) isthe most important of these parameters, asit is directly proportional to a, (). For simplicity,
only a,(A) and a,(4) are varied to parameterize a,(4), with a,(4) and a;(A) being set to the constant values
of -0.5 and 0.010, respectively. Figure 3 shows the measured data and the modeled curves for a (1)
measurements taken from the GOMEX, COLOR, and TN048 cruises. The parameters a,(1)-a,(1) are
listed in Table 1.

The method used to determine absorption coefficients for particles and for detritus involves
filtering as much as 4 liters of water through a 25 mm diameter, Gelman glass-fiber filter (GFF). This

large amount of water is used to concentrate the sample enough for accurate measurements of the pad
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Figure 3. a,(1)/a,(675) vs. g,(675) for each MODIS
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The lines are described by Eq. 12 using the parameters
listed in Table 1, and they represent the minimum sum of
squared errors for modeled vs. measured values of

3,(1)/3,(675).

optical density (OD) to be determined (Shibata, 1958; Mitchell, 1990; Nelson and Robertson, 1993;
Moore et al., 1995). In order to estimate absorption coefficients from the OD measurements, an optical
path elongation factor, called >, which is dependent upon OD, is employed. Recently however, it has
been shown that > varies with the particle size prevalent to aregion (Moore et al., 1995). This happens
because smaller particles get deeply imbedded into the pad, providing a greater absorption cross-section
for photons scattered numerous times than for the large particles remaining at the surface of the pad. For
our work, we chose a > factor appropriate for small, subtropical particles by averaging two published >
factors, one developed for detritus (Nelson and Robertson, 1993) and one for synechococcus (Moore et
al., 1995). Our > factor is



15

B=1.0+0.607°%° (13)

3.1.2.3.2 Expression for a, and a,

a4(A) and a,(A) can both be fit to acurve of the form a,(A) = a,(400) exp[-S(A-400)] where the
subscript "x" refersto either "d" or "g" (Bricaud et al., 1981; Roedler et al., 1989; Carder et al., 1991).
Dueto this similarity in spectral shape, the a,(A) term can be eliminated, allowing both detrital and
CDOM absorption to be represented by a(A). The combined CDOM and detritus absorption term is thus

written

a () =a,(400) exp X490 (14)

where Sis empirically determined. Many researchers have reported that S, = 0.011 nm™, on average
(Roesler et al., 1989). For the GOMEX and COLOR cruises, an average value of 0.017 nm™ was
measured for S,. Vaues reported by F. Hoge (personal communication) for the Sargasso Seawere
somewhat higher as are those found near swampy regions of the Gulf of Mexico. The algorithm
performance was optimized by varying S;, with the value 0.019 nm™ providing the smallest residual
error compared to field measurements.

Asafinal note onthe R, model, Egs. 9-12, and 14 are written in ageneral way to emphasize
that the values of the parameters X ,, X,, Y,, Y, &, &, and S are not meant to be absolute. They should
be updated and changed as more data become available. These parameters may also be changed with

region and season to optimize algorithm performance.

3.1.2.4 Inverting the Model

All of the pieces of the reflectance model are now in place. ViaEgs. 2-4, 9-12, and 14, R (A)
can be expressed solely as afunction of the "constant” term, R (443), R (488), R (551), 3,(675), and
a,(400), given vaues for the parameters for X, X, Yo, Y4, 3y(A), a(A), and S. L,,(A) from MODIS can
be converted into R () as mentioned previously. Then, for each pixel, the R, model equation can be
written for each of the 5 available MODI S wavebands yielding 5 equations written in 3 unknowns: the
"constant” term, a,(675), and a,(400).

Using spectral ratios of R, eliminates the "constant” term, sinceit is largely independent of
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wavelength. In principle, two spectral ratio equations can be used to solve for the two remaining
unknowns, g,(675) and a,(400). Based on the shape of the absorption curve for phytoplankton versus
those for CDOM and detritus, equations using spectral ratios of 412:443 and 443:551 for R,(A) should

provide a good separation of the two absorption contributions. Our two equations are

R.(412)  b,(412) a(443)

R (443) b, (443) a(412)

(15)
R,(443)  b,(443) a(551)

R.(551) b,(551) a(443)

The right-hand side of each equation is afunction of a,(675), a,(400), R (443), R (488) and R, (551).
Sincethe R, values are provided on input, we now have two equations in two unknowns. The eguations
can usualy be solved algebraically to provide values for a,(675) and a,(400). The computational method
of solving these equationsis described in Section 3.2.1.

For waters with high concentrations of CDOM and chlorophyll, L (412) and L, (443) values are
small, and the semi-analytical algorithm cannot perform properly. It isthus designed to return values
only when modeled a,(675) is less than 0.06 m™, which is equivalent to [chl a] of about 3-4 mg m™.
Otherwise, an empirical algorithm for [chl a] is used, which isdescribed in Section 3.1.2.6. Thereis
presently no output for a,(675) and a,(400) when the empirical [chl a] agorithm is employed, but

empirical algorithms for these variables are under devel opment.

3.1.2.5 Pigment Algorithm for Semi-analytical Case

When the semi-analytical agorithm returns avalue for a,(675), [chl a] is determined viaadirect
relationship to thisvalue. This step requires precise knowledge of the chlorophyll-specific absorption
coefficient for phytoplankton at 675 nm, a¢*(675). [chl &] vs. a,(675) data used to examine this
relationship must be internally consistent. For example, due to self-shading or pigment-packaging
(Mord and Bricaud, 1981), pigments in vivo (still within the cells) should never absorb more than the
same pigments in vitro (extracted from the cells) once solvent effects are accounted for, yet the literature
isreplete with in vivo g, (675) measurements far exceeding 0.025 m?[mg chl a]™*. Thisvalueis higher
than the in vitro specific absorption coefficient at the red peak for pure chlorophyll ain solution, which
isabout 0.0203 m?[mg chl a]™ for solution in acetone (Jeffrey and Humphrey, 1975) and about 0.0171
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m?[mg chl a]™ for solution in methanol (unpublished results from our lab), but it allows for some
absorption by pheopigments and accessory pigments.

To evaluate variations of a,(675) with [chl a], we developed our own subtropical data set to
explore some of the variation in a, (675) under high-light conditions. This data set came from surface
water samples from several Gulf of Mexico cruises (BONG 1, BONG 2, BOSS 1, and WFS) and one
cruise to the Arabian Sea (TN048). Linear regression of log([chl a]) vs. log(a,(675)) yields an equation

of theform

[chl a] =Py «[ a,(675)]" (16)

For the data set mentioned above, the regression resulted in p, and p, values of 56.8 and 1.03 (n = 95, r’=
0.97 on the log-transformed values). Thisregression and the data are shown in Figure 4. These values
were adjusted slightly to 51.9 and 1.00, respectively, to ssimplify by elimination of the nonlinear term for
use with global, subtropical data sets.

3.1.2.6 Pigment Algorithm for the Default Case

When the semi-analytical agorithm does not return a value for a,,(675), we provide an empirica,
two-wavelength algorithm for [chl a] to use by default. Aiken et al. (1995) found that the
L, (488)/L,,(551) ratio is best for empirical [chl a] determination. We use an equation of the form

log[chl a],. =c, +c,1og(rg) +c,[log(rg)]? +c,[log(ry)]® @)

where

R, (488)

Iss = R .(551) (18)

[chl &, is called the "empirically-derived" or "default” chlorophyll a concentration, and ¢, ¢;, and c,

are empirically derived constants.
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A subtropical and temperate summer data set was constructed from stations from the MLML 2,
GOMEX, COLOR, and TN042 cruises, and from stations below 45 °N from the TT010 cruise (Table 2).

This data set includes both open-ocean and riverine-influenced stations. Quadratic regression of log([chl

a]) against log(r,s) for measured [chl a] and R (A) in this data set resulted in values of ¢, = 0.289, ¢, =

-3.20, ¢, = 1.20, and c; = 0.00 (n = 62), yielding aroot mean square (RMS) error of 0.51. The data and
theregression line are shown in Figure 5.
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3.1.2.7 Weighted Pigment Algorithm

Another consideration is that there should be a smooth transition in [chl a] values when the
algorithm switches from the semi-analytical to the empirical method. Thisisachieved by using a
weighted average of the [chl a] values returned by the two algorithms when near the transition border.
When the semi-analytical algorithm returns an a,(675) value between 0.015 and 0.03 m™, [chl a] is
calculated as

[chl a] =w][chl a]_, + (1-w/[chl a]e,m (19)

where [chl a], isthe semi-analytically-derived value and [chl a],,, is the empirically derived value, and

the weighting factor isw = [0.03-a,(675)]/0.015.

3.1.2.8 Total and Phytoplankton Absor ption Coefficients
The phytoplankton absorption coefficients, a,(4;), are calculated by inserting the modeled
8,(675) value into Eq. 12 and using the necessary parameters from Table 1 for each wavelength. The
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total absorption coefficients, a(A;), are calculated by inserting the modeled a,(400) value and the S
parameter from Table 1 into Eq. 14 to get a,(4;), then combining them with the a,(4;) valuesin Eq. 11.

3.2 Numerical computation

a,(675) and a,(400) are determined from Eq. 15 by inverting one of the equationsto isolate
a,(400), substituting into the other equation, and moving all termsto one side, yielding afunction that
depends only on g,(675) (given valuesfor R,;and Table 1 for the algorithm parameters). The value of
8,(675) at which the function crosses zero is the solution we seek. This solution is determined
computationally via the bisection method. A 33-element array of a,(675) values, scaled logarithmically
from 0.0001 to 0.06 m™ is created, and the function is evaluated at the two extrema. |If the function
changes sign between the two outermost values, a solution exists on the a,(675) interval. The functionis
then evaluated at the mid-point of the array, and the half in which the function changes sign becomes the
new search interval. In this manner, the solution interval, which will be two adjacent points on the
8,(675) array, isdetermined in 5 iterations. Linear interpolation across the interval yields the semi-
analytical a,(675) value, and a,(400) is determined via either one of the R -ratio equations using the
modeled value of a,(675). If the function does not change sign across the two outermost values, a switch
is made to the empirical, two-wavelength default algorithm.

When compared to an older lookup-table-based method (Carder et al., 1991), the bisection
method gave identical solutionsto within 5 significant digits for a,(675) and g,(400), and the code ran in
75% of the time that the lookup-table-based version of the code took.

The algorithm code iswritten in ANSI C. The program file contains about 300 lines of code and
comments. It was developed and tested on a DEC Alpha machine which uses the DEC OSF/1 C
Compiler. All of the algorithm parameterslisted in Table 1 are read in from afile, so different parameter
tables can easily be constructed for different applications. The code is available via anonymous ftp at:

gold.marine.usf.edu locates at /pub/swf_alg/

4.0 Algorithm Evaluation
4.1 Statistical criteria

To evaluate algorithm performance we generated statistics that are determined on log-
transformed variables so as to provide equal weighting to datafrom all parts of the pigment and
reflectance ranges. The slope and intercept values are from Type || RMA regressions. The RMS statistic

described is based on the root-mean square of the logarithm of the ratio of model ed-to-measured values
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(O'Reilly and Maritorena, 1997) and will be referred to here as RMS1. We also generated valties for r
and root-mean-square error on the non-log-transformed (linear) data. Our RMS statistic will be referred
to as RMS2 and is described by

n

X

RMB2 = r-1

X

X obs, i (20)

n -2

~ 2
mod, i~ Xobs, i ]

where x,,; is the modeled value of title element, x; is the observed (arsitu or measured) value of
theith element, and n is the number of elements. Note tf{f10 ~RMS?2 if there is no bias between
the modeled and measured data.

We used two graphical means of evaluating algorithm performance: scatter plots of modeled

versus observed values and quantile-quantile plots (O'Reilly and Maritorena, 1997).

4.2 Testswith USF data (Carder data set)

We initially tested our algorithm with our own data set, called the Carder data set in the
Evaluation Data Set chapter (Maritorena et al., 1997). However, the data set we present here differs from
the Carder data used in the global evaluation data set in two ways. First, we include observed values of
8,(675), and g (400) wherever possible to accompany the obseggdaRd(chla. Second, 17 points of
high-chlorophyll, high-scattering stations, mostly from the Mississippi River Plume region, are included.
The data sources are listed in Table 2.

R.(412), R (443), R (490), R (510), angl R (555) were derived from hyperspegtigl R (
measurements collected just above the sea surface (for measurement protocols, see Lee et al., 1996) by
weighting to simulate the SeaWiFS band responses (Barnes et al., 1994). aAlbtinks were
determined fluorometrically (Holm-Hansen and Riemann, 1978). a (675) was determined as described
in Section 3.1.2.3.1. ;a (400) was determined by measuring 0.2 uM filtered seawater in a
spectrophotometer.

Algorithm performance was evaluated on both the n=87 subset of stations which correspond to
the data available in the SeaBASS evaluation data set provided by Carder and on the full n=104 set. The
algorithm parameters used are shown in Table 1. For the n=87 subset, all but one of the points were
determined via the semi-analytical portion of the algorithm. acll (675), and a (400) were predicted
with RMS1 errors of 0.122, 0.131, and 0.252, respectively, and RMS2 errors of 0.289, 0.302, and 0.405,

respectively. All of the statistics for this and for all evaluations are shown in Table 4. The results are
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shown as scatter (Figure 6a) and quantile (Figure 6¢) plots. The crosses on the plots are the points
determined with the semi-analytical blended algorithm, and all but 4 of these points are from the n=87
dataset. The chl aand g,(675) data appear to be quite evenly clustered about the one-to-one line on both
scatter and quantile plots with no tails at either end. The a,(400) points are predominantly below the
one-to-one line and show avery low bias. There are only 26 pointsin this plot because measured values
of a,(400) are infrequently available for comparison.

4 of the 17 additional high-chlorophyll points are determined by either the semi-analytical or
blended portion of the algorithm. chl a values for the other 13 points are thus determined by the default
empirical algorithm. However, since the default portion of the algorithm does not yet return values for
8,(675) and a,(400), these high-chlorophyll points add little to the tests for those variables. The RMS1
and RMS2 errorsfor chl a for this composite data set were 0.132 and 0.300, respectively. The results are
also shown in Figure 6aand 6¢ (diamonds). The additional high-chlorophyll points extend nicely along

the one-to-one line on both the scatter and quantile plots.

4.3 Testsusing a global data set

A large (n=919) global evaluation data set consisting of measured R, values at the SeaWiFS
wavel engths and pigment measurements was collected by the NASA SeaWiFS Project for the SeaBAM
algorithm intercomparison exercise (Maritorena et al., 1997). These data came from various researchers
around the U.S. and Europe. There were no observed (in situ) values of ,(675) or ,(400) provided in
this data set. In addition to these data, we have received 36 data points from the equatorial Pacific,
which consisted of R, measurements made above the surface (EqPac, courtesy of C. Davis), and we
collected additional data sets from the Southern California Bight (04/97 with G. Mitchell), near Hawaii
(02/97 with D. Clark), and the Kuroshio edge of the E. China Sea (05/97 with G. Gong). An additional
SeaBAM data set provided EqPac Rrs determinations from below water for algorithm comparisons for
both methods. The SCB data provided an opportunity to measure above-water Rrs and to measure

phytoplankton absorption spectrafor conditioning absorption parameters for aregion exhibiting higher
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levels of pigment packaging than do our subtropical stations. This “packaged” parameterization is used
for modelling the multi-year Cal COFI data set of subsurface Rrsvalues provided to the SeaWiFS data
archive by G. Mitchell. The Hawaiian and E.China Sea data sets provided additional oligotrophic data
and data from the planned prime site for vicarious calibration for both SeaWiFS and MODIS.

Since many different locations and sensors were involved with the global data collection, and as
many as four separate sensor channels must be well calibrated to provide accurate spectral ratios of R,
an attempt was made to select an initial core set of data consistent with Case 1 waters and with each
other. Also, an attempt was made to partition the data sets into one for regions where little pigment
packaging is to be expected (e.g., high-light, non-upwelling locations in warm, tropical and subtropical
waters), and one where more packaging might be expected (e.g., western boundary upwelling, non-
summer, high latitude, etc.). To help in thistask, the data were examined with the help of two numerical
filters.

The first numerical filter developed was to compare the data sets with the CZCS chlorophyl|
pigment algorithm (C = 1.14 [r,5] ™, 1,5 = R (443)/R {(555)) to check for consistency with this classical
algorithm for Case 1 waters. Figures 7d, 8d, and 9d show scatter-plots of observed chl a versusr,;for
different groups of data, with the CZCS algorithm illustrated by the dotted line. The warm-water,
subtropical and tropical data sets (Figure 7d) were mostly consistent with the CZCS algorithm for
pigment values less than about 1 mg m™. When data from eastern boundary and upwelling locations
(Figure 7c) were applied to the CZCS algorithm, however, they provided chlorophyll a valuestypically
50% to 90% lower than measured, suggesting that perhaps regional algorithms are needed to obtain best
results for such waters. This helped separate the data into two water types, which we will call
“unpackaged”-pigment waters and “packaged”-pigment waters. Since this “packaging” filter is not
applicable using only spacecraft-derived data, a second type of packaging filter was sought.

A second numerical filter was developed using theratiosr,, (= R,(412)/R (443)) and r (Figures
7b and 8b). For waters with unpackaged pigments, the liner,, = 0.95 [r,5]**® was used to separate high-
gelbstoff data points (those below the line in Figures 7b, 7b) from the Case 1 data. Based upon the
Carder a, data, the gelbstoff-rich Case 2 data had a,(400) valuestypically in excess of the relationship
0.12 [chl a]®’, where 0.12 has the units m? (mg chl)™. Since this data set contained both gelbstoff and
chlorophyll a measurements and had been acquired by making R,, measurements against a reflectance
standard, minimizing calibration uncertainties (see Carder and Steward, 1985), it was used to evaluate
tropical and subtropical waters for gelbstoff-rich conditions, to identify data sets with more packaging,

and to flag data sets with possible sensor-calibration uncertainties.
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To learn to identify waters with more packaged pigments using remotely sensed data, Case 1
datafrom atraditional upwelling region (e.g., CaCOFI) were examined. These data are shown in Figure
8b for comparison to the unpackaged data of Figure 7b. Since pigment packaging reduces the absorption
for agiven concentration of pigments far more at 443 nm than at 555 nm, and somewhat more at 443 nm
than at 412 nm, packaging significantly reduces r while increasing ther,, ratio somewhat. This, then
places packaged data points below ther,, = 0.95 [r,; ]°*° line even without excessive gelbstoff
concentrations (Fig. 7b), at least for points with r,; values in excess of avalue of about 3.0.

For usto be certain that the numerical filter approach works consistently at separating even more
heavily packaged data sets from unpackaged ones, more data sets need to be evaluated. Measurements
of particulate and detrital absorption would be useful. A nascent outline of an approach to vary algorithm
parameters using measurements from space is suggested by our work with ther ;, vs. r,s numerical filter.
This approach will be supplemented with a temperature-anomaly approach based upon estimating
regions experiencing nutrient-replete conditions (Kamykowski 1987). This should improve our facility

and accuracy in modulating the pigment-absorption parameters for future ocean-color algorithms.

4.4 Algorithm evaluation with the " unpackaged" data set

Those data sets generally found consistent with the CZCS algorithm line as well as occurring
abovetheliner,, = 0.95 [r,]®*® for points wherer,; > 3.0, were classified as “unpackaged”, in reference
to the pigment effects on the optics prevalent at those locations at the time of data collection. There are
287 data points in this ensemble data set: 134 USF data points and 37 EqPac equatoria Pacific points, all
measured above-surface and processed using the Lee et al. (1996) protocols, and 126 EgPac points, all
measured below-surface using the Mueller and Austin (1995) protocols. Of these points, 261 (91%)
were processed by the semi-analytical portion of the algorithm yielding RMS1 and RMS2 errors of 0.099
and 0.230, respectively. The scatter (Figure 7a) and quantile (Figure 7b) plots overlay the one-to-one
line at the ends aswell asin the middle. For the log-transformed variables, the Type || RMA slope was
0.999, the bias was 0.002, and r*was 0.873. When all 287 data points were considered using the semi-
analytical algorithm plus the blended and empirical algorithms, RMS1 and RM S2 errors were 0.108 and
0.242, respectively. The Type |l RMA slope and intercept was 0.973, the bias was -0.003, and r* was
0.955. Table 4 has aacomplete summary of these statistics. Note that since these algorithms are largely
semi-analytical in nature and were generated using mostly Gulf-of-Mexico data for the parameterization,
one would not expect to always have slope values of 1.000 and bias values of 0.000 as result from

empirical regression agorithms fit to asingle data set. Note also that the r * values increased using the
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blended algorithm because of the extended range of chlorophyll a. RMS2 errors of less than 25% exceed

our accuracy goal of 35% or less.

4.5 Algorithm evaluation with the " packaged” data set

Several data sets within the global evaluation set were numerically diagnosed as coming from
waters where the pigments were much more "packaged” than those from the warm, tropical and
subtropical data sets evaluated earlier. The other data sets in the archive appeared to contain perhaps
both packaged and unpackaged data. Simulations of the optical properties for these regions required
some minor aterations of the phytoplankton absorption characteristics, based upon the decreased
specific absorption values observed in the California Current area during the CalCOFI 9704 cruise. The
new parameters, shown in Table 3, are used to define adightly different, “packaged” algorithm.

There are 326 pointsin an ensemble of multi-year data sets from the California Current which
we labdl as "packaged.” These consist of CalCOFI (n=303) and Cal9704 (n=23) data which we recently
collected with G. Mitchell. The CaCOFI data were subsurface while the Cal9704 data were above-
surface collections. 303 points (93%) from this “packaged” data set passed the semi-analytical portion
of the new algorithm, yielding RMS1 and RMS2 errorsfor chl aretrieval of 0.111 and 0.268,
respectively. The Type Il RMA slope and intercept was 0.999, the bias was -0.006, and r? value was
0.917. The scatter plot (Figure 8a) overlays the one-to-one line and the quantile plot (Figure 8b) islinear
and overliesthe line, but has a dlight discountinuity near a chlorophyll value of 3. Using the blended
algorithm on 326 data points, the r? increased to 0.951 while the other statistics remained about the same
(Table 4). RMS2 errors of about 28% also exceeds our accuracy goal of 35% or less

4.6 Algorithm evaluation with a global data set

To generate an algorithm to transition from regions and periods with packaged and unpackaged
pigments, we developed a global data set combining the “packaged”, “unpackaged”, and other mixed data
sets from SeaBAM. This data set has 976 data points. We then developed a set of compromise
parameters for this “global” average algorithm, shown in Table 3, for use at times and places where
"packaging" is unknown or transitional. For this data set and these "average" parameters, 883 points
(90.5%) of the points passed the semi-analytical portion of the algorithm, yielding RMS1 and RMS2
errors in algorithm-derived chl a of 0.176 and 0.446, respectively. The Type Il RMA sope was 1.003,
the bias was 0.002, and r* was 0852. Statistics for the entire n=976 set were similar except r* was higher

(0.913). The scatter plot (Figure 9a) looks evenly clustered about the one-to-one line and the quantile
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plot (Figure 9b), though wiggly, overlays the one-to-one line for the most part. Note that if we are unable
to accurately specify the packaging domains of the world ocean, a compromise, blobal algorithm with

about 44% accuracy is likely to be the best accuracy that we can achieve.

5.0 Discussion

The biggest limitation to algorithm development for the global ocean is a paucity of bio-optical
field data from around the globe that are complete with ancillary particle and gelbstoff absorption
spectra. These data are needed in order to assess the spatial and temporal variation in the key algorithm
parameters X, Y, S, a,(400), and most importantly, a,(A) and a,(4). Inorder to derive chl a, itisvitaly
important to be able to predict how %*(k) will vary. Thus, we must study the effect of light history,
which isrelated to season, cloudiness, latitude, and nutrient history, which isinfluenced by mixed-layer

depth, upwelling, river plumes, and offshore/onshore proximity.

5.1 High b, pixels

Since the R, model does not specifically account for absorption and backscattering from
suspended sediments or coccolithophores or for reflection from the bottom, amethod is needed to
determine which pixels are influenced by any of these. Such waters will be referred to as "high-b, Case
2" waters, as opposed to high-gelbstoff Case 2 waters, which the model explicitly accountsfor.
Although not yet implemented, a possible means of identifying high-b, Case 2 stations is to examine the
R.(670):R (555) ratio. Retaining by(A) in the denominator of Eq. 1 is required, and the site-specific
behavior of sediment absorption characteristics must be known. A new spectral, backscatter-coefficient

meter is now commercialy available and will help with X and Y parameterization.

5.2 g, in other environments

We have learned from trends in the data observed so far that the unpackaged, semi-analytical
algorithm performs as well with temperate summer data (TT010 north of 45° and MLML 2 north of 50°)
as it does with subtropical datafor all seasons. How, then, might temperate data from other seasons
and/or data from upwelling and high-latitude areas differ from the temperate summer, non-upwelling
data?

Toinitially address this question we compare a,(A) datafrom MLML 1 (May, 50°-60° N),
MLML 2 (August, 50°-60° N), TT010 (Jduly, north of 45°%), Monterey Bay (fall, upwelling region), and 2
coastal upwelling stations from the Arabian Sea. Although the Arabian Sea data points were collected



31

from a subtropical summer (June) environment, the water was about 4 °C cooler than offshore waters,
indicating alower-light, nutrient-rich, upwelling source, conditioning the water for highly packaged,
fast-growing species such as diatoms. Thisis manifest in Figure 10, where these data fall among the
more packaged points. Here, the ratios of the blue peak to the red peak, a,(443):a,(675), are plotted as a
function of the height of the red peak itself, a,(675), which can be thought of as an indicator of pigment
concentration. The subtropical algorithm values (solid line) and trend lines for the high and low out-
lying points for the entire data set (dashed lines) are a'so shown. The dotted line represents a median
trend for the entire Carder data set, and it approximates the mean line for two years of data from the
Southern California Bight (SCB) (B. G. Mitchell, personal communication). The SCB data al so ranged
widely between the top and bottom dashed curves.

MLML 1
MLML 2
Mont. Bay -
TT010

[@))]
I
e
e
X + > & O

Arabian Sea Upw. 1

0,(443)/a,(675)

07 Il Il Il Il \\\\‘ Il Il Il Il \\\\‘ Il L L | 'l
0.001 0.010 0.100 1.000
0,(675), 1/m

Figure 10. g,(443)/a,(675) vs. a,(675) for stations from various non-
subtropical environments. The solid line is the function used in the
“unpackaged” semi-analytical algorithm. The dashed lines represent the
lower and upper bounds for all of the absorption ratio data that we have
collected (not shown) and the dotted line approximates the median trend.
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The first thing to note in Figure 10 is how well the subtropical line is followed by the high-
latitude summer data. In fact, two of the summer TT010 points along the Washington coast fall among
the highest of the subtropical data. The phaeocystis-rich, spring-bloom, MLML 1 data, however,
represent data with the lowest specific absorption coefficients of the entire study. Similarly, upwelling
data from the Arabian Sea and Monterey Bay fall below the median line for the data set. These data
trends suggest that there is less packaging in summer temperate data than at other times. Maximal
packaging appears associated with high-latitude, low-light, spring bloom stations (MLML 1) and with
typically cloudy upwelling sites. The data also suggest that, as we saw in Section 4, asingle global
algorithm will lack the accuracy needed to address data sets that include subtropical, high-latitude, and
upwelling areas. For the non-subtropical areas, some of the parametersin Table 2 may need to be

functions of region and season.

6.0 A Strategy for Implementation of Variable Package Parameters

While algorithms appropriate for regions with packaged or unpackaged pigments can reduce the
uncertainty in chlorophyll-a concentration from perhaps 50% to less than 30%, methods to determine
when and where to apply appropriate parameterization based upon space-derived data are till under
development. A numerical filter approach has already been discussed, but it is only useful for
oligotrophic waters where r,; > 3.0, and high gelbstoff concentrations cause confusion. This approach
needs to be compared and augmented by at least one other method. A second approach uses the fact that
unpackaged pigments are usually found in high-light, nutrient-poor waters where small-diameter
phytoplankton cells predominate (e.g. Herbland et al. 1984; Carder et al. 1986). Since dissolved nutrients
cannot be detected from space, a nutrient surrogate was sought.

Kamykowski (1987) developed a model that explained much of the covariance observed between
upper-layer temperature and nitrate concentrations (e.g. Zentara and Kamykowski, 1977; Kamykowski
and Zentara, 1986). Kamykowski (personal communication) has since developed nitrate-depletion
temperatures (NDTS) for the global ocean. These NDTs provide a means to observe from space a
variable that indicates when and where nitrate may be limiting phytoplankton growth, and where upper-
layer production is dependent upon recycled nitrogen. Such phytoplankton are typically small (Herbland
et a., 1984) with unpackaged pigments (Carder et al., 1986).

To delimit regions with pigments without self-shading or packaging, we propose to compare
monthly sea-surface temperatures to Kamykowski's NDTs. Figure 11 shows annual trends in sea-

surface temperature (SST), chlorophyll a [Chl a], and NDTs for the Gulf of Maine, Bermuda, and



sst=grn, DK=red, chl=black

AN

\‘\\
@

pigment (mg/m?)

N
H\HHH‘H\HHH‘H\HHH‘H\HHH

1 ‘\\\‘\\\‘\\\‘\\\‘
S
Tei

@]
N
~
o L
o
o
X

0.25

0.20

pigment (mg/m?)
o
o

0.10 =e
0.05 20
0.00 ‘ 1
0 2 4 6 8 10 12
0.06 [ =
= : =2
> 0.04 1 3
\E/ L E25@
% L émé
2 0.021 e
o =
a [ ém
0.00 “ . . n ” E
0 2 4 6 8 10 12
month

Figure 11. Four-year (1982-1985), monthly-mean values of sea-surface temperature
(triangles), CZCS pigment (asterisks), and nitrate-depletion temperature (diamonds)
for locations near @) the Gulf of Maine, b) Bermuda, and ¢) Barbados.
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Barbados. The temperatures and pigments are four-year (1982-85) monthly averages from the AVHRR
and CZCS sensors (USA_NASA _JPL PODAAC_A005). Note that by this approach, pigmentsin the
Gulf of Maine are rarely designated as being unpackaged, those near Barbados are always designated as
being unpackaged, while those near Bermuda are designated as being unpackaged in the summer and
packaged in the winter-spring.

Clearly the Gulf of Maineis alower-light and higher-nitrate environment than are Bermuda
waters, so the degree of packaging there is likely to be much higher. To indicate a higher degree of
packaging, we propose a “packaged” temperature range, SST, < NDT - 0.5°C, below which packaging is
significant. For waters with pigments expected to have little or no packaging, we propose an
“unpackaged” temperature range, SST, > NDT + 1.0°C. For pixelsfaling in either of these two ranges
the semi-analytical algorithm will use the “packaged” and “unpackaged” pigment-absorption parameters,
respectively. For waters with temperatures between SST,, and SST, the parameters will be set to the
“global” values (see Table 3). The regions of the north Atlantic Ocean falling within each of these
domainsis shown in Figs. 12 and 13 for April and August, respectively.

This approach will be tested using the SeaBASS bio-optical data base. Initially, we will use
historical, monthly climatological values of SST to partition the data into three regimes to simulate
pigment packaging. The algorithm will be tested and the results used to adjust SST, and SST,, boundary
values. We expect these values to differ for spring-summer transitions compared to summer-fall
transitions due to the different seed populations available to initiate fall blooms relative to spring blooms.
More definitive evaluations of algorithm performance can be made once actual SST values are provided
in bio-optical data sets.

We expect that this approach -- partitioning space-derived ocean-color datainto bio-optical
regimes that reflect natural changes in pigment packaging -- can improve algorithm performance from a
best of about +/- 50% to better than +/- 30%. Without such partitioning, meeting the MODI S ocean-

team goal of providing chlorophyll-a concentrations with accuracies of 35% or better is unlikely.

7.0 Conclusions

A semi-analytical algorithm was tested with atotal of 604 points from regions where the
pigments were typically unpackaged- or packaged, with appropriate algorithm parameters for each data
type. The "unpackaged" type consisted of data sets that were generally consistent with the Case 1 CZCS
algorithm and using well calibrated data sets. The "packaged" type consisted of data sets apparently

containing somewhat more packaged pigments, requiring modification of the absorption parameters of
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Figure12. Mean (1982-1985), April, CZCS-pigment concentrations for the north Atlantic Ocean (a) and pigment-packaging
regimes for April (b). The purple region in (b) represents the packaged bio-optical domain, orange represents the
unpackaged, and red-orange represents the transitional domain, while the “pink” to red-orange regionsitio(ajrtvans
0.04 to > 4.0 mg-m concentrations of CZCS pigment.
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Figure 13. Mean (1982-1985), August, CZCS-pigment concentrations for the north Atlantic Ocean (@) and pigment-
packaging regimes for August (b). The purple region in (b) represents the packaged bio-optical domain, orange represents

the unpackaged, and red-orange representsthe transitional domain, while the “pink” to red-orange regions in (a) transition
from 0.04 to > 1 mg-m concentrations of CZCS pigment.
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the semianalytical model consistent with the CalCOFI study area. Thisresulted in two fairly equally
divided data sets.

The semi-analytical algorithm performed superbly on each of the data sets after classification,
resulting in RMS1 errors of 0.102 and 0.111 (e.g. 1/10 log units), respectively, for the unpackaged and
packaged data-set classes, with little bias and slopes near 1.0. In combination, the RM S1 performance
was 0.110. RMS2 errors for the algorithms were 24% and 28%, respectively.

While these numbers appear rather sterling, one must bear in mind what misclassification does
to the results. Using an average or compromise parameterization on the modified global data set
yielded an RMSL1 error of 0.174, while using the unpackaged parameterization on the global evaluation
dataset yielded an RMSL error of 0.284. So, without classification, the algorithm performs better
globally using the average parameters than it does using the unpackaged parameters. Some 372 data
pointsin the the Sea BASS archive were from data sets that were mixed or transitional between
“packaged” or “unpackaged” data types, not clearly falling into packaged or unpackaged classes without
more information (e.g. the BATS data from near Bermuda contained both classes). Given locations and
temperatures, we propose to use nitrogen-depl etion temperatures to sort these data into appropriate

classes of packaging on a monthly basis and reprocess the transitional data sets.

8.0 Output Products

Output products from MOD-19 will include the following:

1. Concentration of chlorophyll a for concentrations from .02 to 50 mg/m? for optically deep
waters.

2. The absorption coefficient at 400 nm , a,(400) due to gelbstoff or colored, dissolved organic
matter. All absorption coefficients a(A) for 400 < A < 700 nm can then be estimated with knowledge of
the spectral slope parameter S.

3. The absorption coefficient at 443 nm, g,(443), due to phytoplankton; thisis passed along to
MOD-20 for calculation of a,(A) for the visible spectrum as a contribution to the absorbed radiation by
phytoplankton, ARP, used for fluorescence efficiency calculations.

4. Thesumof g,(A), a,(A), and a,(A) provides the total absorption coefficient spectrum, a(A),
and the diffuse attenuation spectrum, k4(A) = a(A) / cos 6,. See MOD-20.
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Tablel. Parameters for the Case 2 chlorophyll algorithm for regions without packaged pigments; see

text for definitions.

9

wavelength dependent parameters
A 412 443 490 510 555
by, (M) 0.003341 0.002406 0.001563 0.001313 0.00097
a, (m™) 0.00480 0.00742 0.01632 0.03181 0.05910
=N 2.20 3.59 2.27 1.40 0.42
a 0.75 0.80 0.59 0.35 -0.22
3 -0.5 -0.5 -0.5 -0.5 -0.5
8 0.0112 0.0112 0.0112 0.0112 0.0112
wavelength independent parameters
Xo —-0.00182 B S 0.0225 [ oC 0.2818
X, 2.058 o) 51.9 c —2.783
Y, -1.13 n 1.00 ¢ 1.863
Y, 2.57 G, -2.387
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Table2. List of cruises with optical and bio-optical data collected by the University of South Florida
(Carder data set). Numbersin parenthesisin the far left column indicate the number of stations
included in the global evaluation data set.

cruise start date end date region # stations
MLML 2 13 Aug 91 29 Aug 91 North Atlantic, 42°N-60°N 73
TTO010 20 Jul 92 02 Aug 92 North Pacific, 24°N-48°N 10 (10)
GOMEX 10 Apr 93 19 Apr 93 Northern Gulf of Mexico 21 (17)
COLOR 31 May 93 09 Jun 93 Northern Gulf of Mexico 13 (4)
TNO42 29 Nov 94 18 Dec 94 Arabian Sea 12 (12)
TNO48 21 Jun 95 13 Jul 95 Arabian Sea 41 (41)

total =104(87)

Table 3. Algorithm parameters used with the "packaged" and modified global data sets. All algorithm
parameters not listed here are the same asin Table 1. The values of a,(A) shown apply to all of the
SeaWiFS wavelengths. The equation to determine chl a from a,(675) for this data set is given by

Equation 21.

parameter | packaged global
a,(412) 1.90 1.95
a,(443) 2.70 2.95
a,(490) 1.90 1.99
a(1) -0.45 -0.5

as(A) 0.021 0.025
Po 74.1 72.4
P, 1.0 1.0
P, 0.0 0.0

c, 0.4818 0.3147

C, -2.783 -2.859

c, 1.863 2.007

C, -2.387 -1.730
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Table4. Summary of regression statistics for each data set tested. The unpackaged data consists of the
Carder, EqPac above-surface, EqPac below-surface, Taiwan, and MOCE3 data sets. The packaged data
consists of the CalCOFI, and CAL9704 data sets. The global data consists of the global evaluation data

set, minus the Cotaand U. Maryland data plus the high-chlorophyll Carder, EgPac above-surface,

Taiwan, and MOCE3 data, and uses one set of average algorithm parameters for the whole data set. SA
indicates that only the modeled values that passed the semi-analytical portion of the algorithm are used

(including blended values). SA+EMP indicates that all modeled values—semi-analytical, blended, and

empirical—are used. All statistics except RMS2 are calculated froj log -transformed variables.

data set variable n intercepi slopg biag 2 R RMEL RNS2
Carder chl SA 86 0.019 1.02( 0.01d 0.941 0.132 0.489
Carder chl SA+EMP 104 —0.007 0.9717 -0.042 0.9p3 0.132 0.800
Carder 3 (675) SA 87 0.098 1.05# -0.048 0.89¢8 0.131 0.802
Carder a (400) SA 26 -0.278 0.90{5 -0.186 0.7p1 O.2t32 04405
unpackaged chl SA 261 0.001 O.99b 0.0(12 0.8|73 0.(199 0Jp30
unpackaged chl SA+EMP| 27 -0.019 0.97|3 —0.04)3 0.455 0.108 0)242
packaged chl SA 304 -0.006 0.99{9 —0.0(16 0.9|l7 0.1n1 0.[268
packaged chl SA+EMP 3245 0.004 1.01|2 -0.0Q3 0.9}51 0.]Il4 0{p82
global chl SA 883 0.002 1.003| 0.00ZI 0.85|2 0.176 0.446
global chl SA+EMP | 976 0.003 1.003 0.007 0.933 0.174 0.440




